
fpsyt-13-1070198 December 9, 2022 Time: 14:47 # 1

TYPE Original Research
PUBLISHED 15 December 2022
DOI 10.3389/fpsyt.2022.1070198

OPEN ACCESS

EDITED BY

Zhi Xu,
Southeast University, China

REVIEWED BY

Feng Liu,
Tianjin Medical University General
Hospital, China
Renping Yu,
Zhengzhou University, China

*CORRESPONDENCE

Zhengxia Wang
zxiawang@hainanu.edu.cn

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Computational Psychiatry,
a section of the journal
Frontiers in Psychiatry

RECEIVED 14 October 2022
ACCEPTED 28 November 2022
PUBLISHED 15 December 2022

CITATION

Guo L, Zhang Y, Liu Q, Guo K and
Wang Z (2022) Multi-band network
fusion for Alzheimer’s disease
identification with functional MRI.
Front. Psychiatry 13:1070198.
doi: 10.3389/fpsyt.2022.1070198

COPYRIGHT

© 2022 Guo, Zhang, Liu, Guo and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Multi-band network fusion for
Alzheimer’s disease
identification with functional
MRI
Lingyun Guo†, Yangyang Zhang†, Qinghua Liu,
Kaiyu Guo and Zhengxia Wang* for the Alzheimer’s Disease
Neuroimaging Initiative

School of Computer Science and Technology, Hainan University, Haikou, China

Introduction: The analysis of functional brain networks (FBNs) has become

a promising and powerful tool for auxiliary diagnosis of brain diseases,

such as Alzheimer’s disease (AD) and its prodromal stage. Previous studies

usually estimate FBNs using full band Blood Oxygen Level Dependent (BOLD)

signal. However, a single band is not sufficient to capture the diagnostic and

prognostic information contained in multiple frequency bands.

Method: To address this issue, we propose a novel multi-band network fusion

framework (MBNF) to combine the various information (e.g., the diversification

of structural features) of multi-band FBNs. We first decompose the BOLD

signal adaptively into two frequency bands named high-frequency band

and low-frequency band by the ensemble empirical mode decomposition

(EEMD). Then the similarity network fusion (SNF) is performed to blend two

networks constructed by two frequency bands together into a multi-band

fusion network. In addition, we extract the features of the fused network

towards a better classification performance.

Result: To verify the validity of the scheme, we conduct our MBNF method on

the public ADNI database for identifying subjects with AD/MCI from normal

controls.

Discussion: Experimental results demonstrate that the proposed scheme

extracts rich multi-band network features and biomarker information, and also

achieves better classification accuracy.
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functional brain networks, signal decomposition, network fusion, resting state fMRI,
Alzheimer diagnosis
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1 Introduction

Alzheimer’s disease (AD) is an irreversible
neurodegenerative disease that severely impacts the quality of
life for patients (1). As a non-invasive measure for detecting
brain abnormalities, functional brain network (FBN), derived
from resting state magnetic resonance imaging (rs-fMRI),
provides a valuable opportunity for early intervention and
control of AD disease. Previous studies usually divide the
brain of patients into several regions of interest (ROI) through
a certain brain template. Then, the FBN is constructed by
calculating the full band Blood Oxygen Level Dependent
(BOLD) signals correlation coefficients among these ROIs.
However, a single band is not sufficient to capture the
diagnostic and prognostic information contained in multiple
frequency bands.

In practice, BOLD signals based on different frequencies
have different physiological significance. As early as 1995,
researchers found that there is a correlation between low-
frequency BOLD signals in certain brain regions (2). In
2011, Baria et al. divided the BOLD signal into four
frequency bands to study the energy of each band and
its distribution in the whole brain. They found that the
signals in the 0.01–0.05 Hz frequency band are mainly
distributed in the prefrontal, parietal, and occipital cortices;
the signals in the 0.05–0.1 Hz frequency band are mainly
distributed in the thalamus and basal ganglia; the signals
in the 0.1–0.15 Hz frequency band are mainly distributed
in the insula and temporal cortex; the signals in the 0.15–
0.2 Hz frequency band are also distributed in the insula
and temporal cortex (3). Most studies focused on the BOLD
signal at (0.01–0.08) Hz, a range in which frequencies vary
between brain regions.

In addition to the different physiological significance, many
studies found that the use of frequency division in estimating
FBNs with different frequency bands can achieve a variety
of descriptions of FBN structures. For example, Zhang et al.
calculate the node statistics (e.g., node degree, node path
length, and betweenness centrality) of FBNs estimated by
different bands and discover that the structural characteristics
of different frequency bands are significantly different (4). Song
et al. decomposed the time series of each voxel and found
that ReHo in cortical areas was higher and more frequency-
dependent than those in the subcortical regions (5). Li et al.
found that compared with the healthy control group, the
functional connectivity of patients with temporal lobe epilepsy
in δ, θ, low α, and β bands was significantly increased, and
the value of the weighted small-world measure in θ band
was significantly decreased (6). Besides, studies have found
that different band-based FBNs used for disease diagnosis
achieved different classification results (7). The explanation
is that FBNs based on different frequencies have different
discrimination abilities.

Since the different information brought by different
frequency bands, it is a good perspective to decompose the
BOLD signal into multiple bands for constructing multiple
FBNs and fuse the features of every FBN. For example,
Zou et al. extract the temporal, spatial, and spatial-temporal
variability features of functional networks in each frequency
band and fused them into a set of feature vectors for
schizophrenia classification (8). Zuo et al. proposed a deep
multi-fusion framework with classifier-based feature synthesis
to automatically fuse multi-modal medical images. They
validated the approach for brain disease classification using
the fused images and illustrated that the improvement in
classification performance is due to the adoption of the
fusion strategy (9). However, these feature fusion methods
have limited interpretability, which does not provide a good
biomarker for the diagnosis of brain diseases. More important,
both global-and local-level features extracted from FBNs
tend to capture different network properties, which requires
prior knowledge and thus makes the feature design an
intractable problem.

Different from feature fusion, network fusion can
obtain the diverse information of multiband-based FBNs
and eliminate the redundant information caused by the
correlation between different feature sets. Considering the
varied characteristics of FBNs in different frequency bands,
we propose a novel multi-band network fusion framework
(MBNF) to estimate information-rich multi-frequency
FBNs. Specifically, our framework can be summarized in
the following steps: (1) using ensemble empirical mode
decomposition (EEMD) to decomposed the bold signal
into high and low-frequency bands adaptively; (2) fusing
FBNs constructed by the two frequency bands into a
multi-band fusion network by similarity network fusion
(SNF); (3) extracting the features of the fused networks
and employing the Support Vector Machines (SVM)
for classification.

The rest of the paper is organized as follows. In Section
“2 Material and methods,” we present the experimental data
and the proposed method. In Section “3 Experiment,” we
design the experiment and compare it with other methods. In
Section “4 Discussion,” we discuss the effect of different signal
decomposition methods, and different fusion methods on the
classification results. Then, we propose the limitations of the
work and future research directions. In Section “5 Conclusion,”
we conclude this article.

2 Materials and methods

In this section, we first introduce data acquisition and
preprocessing in detail. Then the overall process of brain disease
classification based on the MBNF framework is presented in the
following parts.
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2.1 Dataset description and image
preprocessing

In this paper, we evaluate our proposed scheme based
on the dataset from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), which divides MCI into two subcategories,
early MCI (eMCI) and late MCI (lMCI), and previous studies
have shown that lMCI has a high potential for transition
to AD. The datasets contain 154 normal controls (NCs),
165 eMCI, 145 lMCI, and 99 AD. The scan parameters of
these data as listed below: in-plane image resolution is 2.29–
3.31 mm and the thickness of each slice is 3.31 mm. The
Echo time (TE) of the slice is 30 ms, and the repetition
time (TR) is 2.2–3.1 s. Each subject’s scan consisted of 140
volumes. The detailed demographic information is shown in
Table 1.

We used FSL FEAT software which is a standard pipeline
to process the rs-fMRI scans (10). We first cast aside the first
3 volumes to allow signal stabilization. For the remaining 137
volumes, we corrected the slice time and motion to avoid
interference with the data and eliminate the impact of head
motion. Then, we striped the structural skull according to
the T1-weighted MRI. We use the processed image to align
with the Montreal Neurological Institute (MNI) space. All
subjects are processed with band-pass filtering at frequency
intervals of [0.015, 0.15 Hz]. And then we regress the nuisance
signals which contain motion parameters, white matter, and
cerebrospinal fluid. Furthermore, a Gaussian kernel with
full-width-at half-maximum (FWHM) of 6 mm is used to
smooth the data. It is worth noting that we did not perform
scrubbing to data because this would introduce additional
artifacts. At last, the brain space of fMRI scans is partitioned
into 116 pre-defined ROIs using the Automated Anatomical
Labeling (AAL) template (11). For each subject, the bold
signals are extracted from each ROI, and then normalized as
following:

r(x) =
(x− µi)

σi
(1)

where x denotes the time point signal from the i-th ROI.
µi represents the mean of the x and σi denote the standard
deviation of the x.

TABLE 1 Demographic information of the involved 563 rs-fMRI
subjects from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database.

Category Scan # Age (Years) Gender (M/F)

AD 99 75.04± 7.71 55/44

eMCI 165 72.03± 7.26 73/92

lMCI 145 71.99± 7.67 95/50

NC 154 75.36± 6.16 67/87

The values are denoted as mean± standard deviation. M/F: male/female.

2.2 The multi-band network fusion
framework

In this section, we introduce the multi-band network
fusion framework (MBNF) scheme for brain disease diagnosis.
As shown in Figure 1, the MBNF contains three major
parts: (1) BOLD signal decomposition based on EEMD; (2)
FBN construction and fusion; and (3) feature selection and
classification.

2.2.1 BOLD signal decomposition based on
EEMD

Previous studies typically used band-pass filters (e.g.,
wavelet transform) to acquire multi-band signals. However,
since the frequency characteristics of the BOLD signal are
complex, traditional band-pass filters are unsuitable. Therefore,
Huang et al. propose a novel adaptive signal time-frequency
processing method called empirical mode decomposition
(EMD) (12). Different from wavelet transform which needs
to set the feasible decomposition layers in advance, EMD
can decompose signals adaptively according to the time
characteristics of data. Specifically, EMD can decompose
the non-stationary time series into a group of Intrinsic
Mode Functions (IMF) components, which are oscillatory
functions with time-varying frequencies and can reflect the local
characteristics of non-stationary signals (13).

In practice, the mode aliasing problem can occur during
the execution of EMD, which leads to mistakes for subsequent
feature extraction, model training, and pattern recognition. To
solve this problem, the ensemble empirical mode decomposition
(EEMD), an improved method of EMD, is performed for
signal decomposition in the proposed MBNF method (14).
Specifically, EEMD adds different white noises with the same
amplitude to alter the extreme point characteristics of signals
(15). Figure 2 presents the algorithm flowchart. In Figure 2, x is
the original signal, nm represents them− th additive white noise
sequence, cm,f represents the f − th IMF component obtained
by decomposition after adding white noise for the m− th time, f
is the number of IMF components, rm,f is the residual function,
andM is the average number of corresponding IMF components
after multiple decomposition.

After obtaining the IMF components, we transformed the
IMF time-domain signals of each brain region into frequency-
domain signals to display the frequency-domain range of each
IMF component. Note, since EEMD decomposition is adaptive,
the number of IMF components after signal decomposition in
each brain region may be different. Specifically, we calculate
the average frequency of IMF components in every brain
region and show the total results of all subjects in different
categories (i.e., eMCI, lMCI, AD, and NC) in Figure 3. We
can observe in Figure 3 that no matter in which category,
the IMF1 component is about 0.06–0.16 Hz, while the average
frequency of other IMF components is less than 0.1 Hz. In order
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FIGURE 1

Flowchart of the proposed multi-band network fusion framework (MBNF) scheme for brain disease classification, including four major parts: (A)
data acquisition and image pre-processing; (B) blood oxygen level dependent (BOLD) signal decomposition based on ensemble empirical mode
decomposition (EEMD); (C) functional brain networks (FBN) construction and fusion; and (D) feature selection and classification.

FIGURE 2

The algorithm flowchart of ensemble empirical mode decomposition (EEMD).

to facilitate the construction of a FBN for subsequent analysis,
IMF1 components are used as high-frequency BOLD signals,
and the remaining IMFs components are integrated together as
low-frequency BOLD signals.

2.2.2 FBN construction and fusion
Once we obtain the high/low-frequency BOLD signals of

each ROI, we utilize the two types of signals to estimate different

FBNs, which provides an effective tool to compare different
subjects and to mine biomarkers of neurological/mental
disorders. Note, we perform different methods to construct
FBNs in the follow-up experiment for verifying the robustness
of our method. In recent decades, a number of methods
have been developed for constructing FBNs, among which
the representative is Pearson’s correlation (PC) and sparse
representation (SR) (16–18).
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FIGURE 3

The average frequency of intrinsic mode functions (IMF) components in every brain region in different categories.

Specifically, denote P (P = 116 in this work) is the number
of ROIs and T (T = 137 in this work) is the total number of
temporal image volumes. For any i, j (i, j = 1, · · · , P), Wij is
the functional connectivity between a pair of ROIs i and j. The
calculation formula of PC-based functional connectivity is as
follows:

WPC
ij =

(xi − x̄i)T(xj − x̄j)√
(xi − x̄i)T(xi − x̄i)

√
(xj − x̄j)T(xj − x̄j)

(2)

where xi ∈ RT represents the time series of the ith ROI,
x̄i ∈ RT is the corresponding mean vector of xi . Another FBN
construction method is SR, which is an l1 -regularized linear
regression. The mathematical model can be obtained by the
following objective function:

min
WSR

P∑
i=1

(||xi −
∑
j 6=i

WSR
ij xj||

2
+ λ

∑
j6=i

|WSR
ij |) (3)

where λ is a regularized parameter. Note, the same methods
are performed for high-frequency FBN and low-frequency
FBN.

After FBN construction, we perform the similarity network
fusion (SNF) method to fuse high/low-frequency FBNs for
obtaining complementary information of multi-frequency
bands. The similarity fusion network is robust to noise and
can obtain useful information from fewer samples (19, 20). For
high-frequency FBN (WHigh) and low-frequency FBN (WLow),
we construct similarity matrix SHigh and SLow separately. Note,
similarity matrix is a sparse kernel matrix encoding its own
sparse strong connections. For every similarity matrix S, we use
the K-nearest neighbors (KNN) to measure the local affinity,
and set the similarity between non-adjacent points to zero. The
calculation formula of similarity value between a pair of ROIs i
and j is as follows:

Sij =

{
Wij, if i ∈ KNNj

0, otherwise
(4)

where KNNj represents a set of K-nearest neighbors of the ROI
j in W. Similar to previous study (21), we set the number of
nearest neighbors to 11.

Based on the sparse kernel matrixes SHigh and SLow, we
fuse them into a single network using nonlinear methods. Each
similar network needs to be updated iteratively to make it
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more similar to another network. For example, SHigh could be
iteratively updated as follows:

(WHigh)g+1
= SHigh × (WLow)(g) × (SHigh)T (5)

where g is the number of iterations, (WLow)(g) represents the
WLow after gth iteration.

Because different networks carry distinct frequency
information, WHigh can integrate the information provided by
WLow after several iterative learnings. At the same time, the
sparse kernel matrix S guides the iterative process through the
strongest connections of W, and thus can reduce the noise
effectively. Iteration stops when the converged network is
close to stopping changing. Because different networks carried
different frequency information, fusion networks integrated
the information provided by different frequency networks.
When the iterative fusion network was almost constant, the
network stopped iterating. Specifically, the fusion network
stops updating in the process of iteration when it satisfies the
formula (6):

||(WHigh)g+1
− (WHigh)g || ≤ 0.01 (6)

Finally, we obtain the fusion network by averaging two
networks. The fusion network is as follows:

WFused
=

(
WHigh

)′
+
(
WLow)′

2
(7)

where (·)
′

represents the last updated matrix.

2.2.3 Feature selection and classification
Once we obtain the fused FBNs for all subjects, the

subsequent task is to extract/select the most discriminative
features according to the FBNs for disease classification.
Currently, there are two categories of features based on
different granularities in FBN analysis, including node-level
and edge-level features. Since the node-level features tend
to capture different network properties that caused the extra
prior knowledge to design effective features, we use the edge-
level feature (i.e., functional connectivity between ROIs) in
our experiment. As shown in Figure 4, we concatenate the
upper triangle of the obtained fused FBNs into an edge
vector (removing the redundant part if the adjacent matrix is
symmetric), and then pile up the edge vectors from all subjects
into a feature matrix for subsequent classification tasks. Besides,
in order to remove redundant information in these features,
t-test is used for feature selection (P < 0.05).

Finally, considering that small changes in different steps
(FBN construction, feature selection, and classification) will
have an impact on the end results, it is difficult to conclude
which step contributes further to the final accuracy. Therefore,
the simplest and most popular classifier support vector
machine (C = 1) is performed to classify the AD/MCI
from NC. In addition, the reason for using SVM instead

FIGURE 4

The mechanism of traditional edge feature extraction in
functional brain network (FBN). The network adjacency matrix
from each subject is first mapped onto a vector by removing the
redundant part if the matrix is symmetric, and then the vectors
from all subjects are rearranged together as an input of the
following feature selection methods.

of deep learning is the latter often requires very large data
sets. It is challenging to train a good model and tune
the hyper-parameters when there are not enough training
samples (subjects).

3 Experiment

In this section, we first introduce the competing methods
with our proposed scheme and the settings of our experiment.
Then the experiment result is analyzed in detail.

3.1 Competing methods

In the experiments, we compare our proposed MBNF
with several schemes, including (1) Full-Band, a scheme
based on FBN construction by a full BOLD signal; (2) Low-
Band, a scheme based on FBN construction by the low
band after BOLD signal decomposition; (3) High-Band, a
scheme based on FBN construction by the high band after
BOLD signal decomposition; (4) MBNF, our proposed scheme.
For a fair comparison, we employ t-test (p < 0.05) to
select discriminative features and then use SVM (C = 1)
for brain disease classification for all competing schemes.
Besides, two FBN construction methods mentioned in 2.2.2
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TABLE 2 Classification performance of four schemes in four classification tasks based on Pearson’s correlation (PC) construction method (mean ±

standard deviation).

Task Scheme ACC (%) SEN (%) SPE (%) AUC (%)

eMCI vs. NC Full-band 84.29± 1.94 88.60± 1.47 79.92± 1.52 90.94± 0.47

Low-band 78.98± 1.04 81.82± 1.07 76.94± 2.31 87.86± 0.96

High-band 83.94± 1.28 88.61± 1.31 78.24± 1.17 89.58± 0.83

MBNF 90.60 ± 1.56* 92.72 ± 1.95* 88.48 ± 2.14* 97.50 ± 0.25*

lMCI vs. NC Full-band 86.28± 2.02 87.95± 2.13 83.40± 1.22 82.43± 0.32

Low-band 78.25± 1.18 80.48± 1.72 74.89± 1.83 87.03± 0.61

High-band 84.61± 1.58 85.95± 1.52 80.03± 1.64 92.02± 1.05

MBNF 91.98 ± 1.66* 93.34 ± 2.29* 90.23 ± 1.47* 97.12 ± 0.71*

eMCI vs. lMCI Full-band 81.93± 2.11 91.78 ± 1.81 73.41± 2.23 88.19± 0.57

Low-band 76.77± 0.98 74.67± 1.32 80.06± 1.37 82.43± 1.04

High-band 75.80± 1.74 68.24± 2.01 83.32± 0.95 87.05± 1.11

MBNF 90.64 ± 1.44* 86.02± 1.92 94.97 ± 2.02* 96.98 ± 0.46*

AD vs. NC Full-band 90.49± 2.01 87.95 ± 1.23 83.40± 1.78 82.43± 0.41

Low-band 80.63± 0.94 79.03± 1.44 90.97± 0.89 86.79± 0.52

High-band 90.89± 1.27 81.38± 1.56 95.39± 2.01 96.90± 0.79

MBNF 93.08 ± 1.85* 86.96± 1.35 96.73 ± 1.32* 98.58 ± 0.74*

*Denotes that the result of MBNF is significantly better than other competing schemes. Bold values indicate the best results in each task.

are performed in our experiment to further indicate the
effectiveness of our method.

3.2 Experimental settings

We designed four classification tasks to evaluate the
performance of our method and four competing schemes, which
are as follows: (1) eMCI vs. NC (2) lMCI vs. NC (3) AD vs.
NC (4) eMCI vs. lMCI. Then, three evaluation metrics are
employed for evaluating the classification performance of all
methods, including classification accuracy (ACC), sensitivity
(SEN), and specificity (SPE), which are defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100% (8)

SEN =
TP

TP + FN
× 100% (9)

SPE =
TN

TN + FP
× 100% (10)

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.
In addition to the above, we also add the area under
the receiver operating characteristic curve (AUC)
as another metric.

In our experiment, a 5-fold cross-validation (CV) is
adopted to evaluate the generalization capability of the
different methods. Besides, considering the hyper-parameters
(i.e., sparsity) involved in the FBN construction methods may
significantly affect the ultimate classification results, we select

optimal parametric values by a grid search in a large range. For
the regularized parameter λ in SR, we use 20 candidate values
in [0.1, 0.15, 0.2, . . ., 0.95, 1]. Although PC is parameter-free.
For a fair comparison, we perform a thresholding parameter in
PC by preserving a percentage of connectivity with strongest
correlation. To be consistent with other methods, we set up
20 sparsity from a candidate set [5%, 10%, ...95%, 99%]. For
example, 100% means all edges are preserved, and 90% means
10% weak edges are removed. Then, an inner-5-fold CV on the
training data to determine the optimal sparsity, which is based
on the classification accuracy in each inner loop. For fairness,
we also employed inner-5-fold CV strategy in other competitive
methods compared with MBNF. Note, we perform the 5-fold
CV process 1,000 times independently to avoid random errors
introduced in cross-validation, and the mean and standard
deviation of the classification results are reported in Table 2. To
illustrate the statistical significance of the results, we perform a
paired t-test (p < 0.05) on the results of the methods involved
and then use “∗” to mark the results better than the other
methods.

3.3 Classification results and analysis

Tables 2, 3 provide the classification results of four schemes
in four tasks based on two FBN construction methods, and also
shows some intriguing findings.

(1) The proposed scheme with multi-band fusion networks is
significantly superior to other three competing schemes.
This indicates that combining the various information
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TABLE 3 Classification performance of four schemes in four classification tasks based on sparse representation (SR) construction method (mean ±

standard deviation).

Task Scheme ACC (%) SEN (%) SPE (%) AUC (%)

eMCI vs. NC Full-band 84.31± 2.31 86.30± 1.85 81.84± 1.39 93.24± 0.56

Low-band 77.43± 1.80 79.69± 1.36 76.01± 1.35 83.02± 0.68

High-band 82.14± 1.53 85.85± 1.09 78.17± 1.91 90.76± 0.51

MBNF 89.91 ± 1.75* 93.51 ± 1.75* 88.59 ± 1.84* 96.97 ± 0.41*

lMCI vs. NC Full-band 89.94± 1.53 90.93± 1.80 89.15± 1.76 95.53± 0.87

Low-band 79.24± 1.69 78.52± 1.56 80.37± 1.77 85.85± 0.89

High-band 86.59± 1.27 87.18± 1.41 85.42± 1.39 93.31± 0.55

MBNF 91.96 ± 1.75* 94.35 ± 1.65* 90.41 ± 1.33 98.02 ± 0.33*

eMCI vs. lMCI Full-band 80.96± 1.34 79.51± 2.07 82.26± 2.14 89.52± 0.31

Low-band 67.09± 1.35 64.80± 2.03 69.52± 1.57 75.09± 0.64

High-band 79.35± 1.52 77.64± 1.59 82.15± 0.98 88.23± 0.57

MBNF 90.96 ± 1.43* 92.26 ± 1.35* 90.81 ± 1.98* 97.65 ± 0.49*

AD vs. NC Full-band 89.34± 1.30 84.04± 1.32 93.62± 1.75 96.45± 0.39

Low-band 86.17± 1.80 81.13± 1.67 88.66± 0.78 90.17± 0.48

High-band 86.96± 1.31 80.33± 1.25 92.78± 1.82 95.83± 0.53

MBNF 92.86 ± 1.69 88.82 ± 1.44* 95.98 ± 1.55* 97.77 ± 0.58

*Denotes that the result of MBNF is significantly better than other competing schemes. Bold values indicate the best results in each task.

of multi-band FBNs helps boost the classification
performance for brain disease classification.

(2) The low-band scheme achieves a worse performance
when compared with the high-band scheme in every
classification task. Combined with previous researches
(22, 23), the possible reason is that the features of high
band-based FBNs are more robust and discriminative.
For example, Zuo et al. have shown that the test–retest
reliability of high-band-based fluctuations is greater and
more widely distributed than that of the low-band (24).

(3) Regarding four tasks of classification based on two FBN
construction methods, the task of identifying subjects
with AD from normal controls is relatively easier. The
underlying reason is that brain function degeneration in
AD subjects could be more serious than MCI and NC.

3.4 Discriminative functional
connections and brain regions

As the most important step in FBN analysis, selecting
the discriminative features is meaningful to search for
the biomarkers used to determine brain disease. A rising
corpus of research indicates that many mental diseases
emerge from interactions between various brain regions
rather than being restricted to just one particular area of
the brain. Therefore, we employ t-test to select the most
discriminative functional connections for our MBFN method
in four tasks of classification. As shown in Figure 5,
the color of each arc is chosen at random for better
visualization, and its thickness represents the discriminative

power of connection (rather than the actual connectivity
strength).

Besides, we also visualized the discriminative brain regions
based on the functional connections in Figure 6. This
visualization is drawn by BrainNet Viewer toolbox1 and these
stably selected brain regions are mapped onto the International
Consortium for Brain Mapping (ICBM) 152 surface based
on AAL atlas. For MCI classification (eMCI vs. NC and
lMCI vs. NC), we can observe that frontal lobe, Cingulum,
Postcentral, Fusiform and inferior temporal gyrus are the
most discriminative brain regions. Previous research has shown
that abnormal changes in these brain regions accelerates
the conversion of people with mild cognitive impairment to
Alzheimer’s disease (25–30). Similarly, for AD classification, the
regions of the posterior cingulate gyrus, postcentral gyrus, c,
hippocampus, middle temporal gyrus, and inferior temporal
gyrus are the most discriminative brain areas, which have been
previously documented to be involved in AD (31–34).

Many brain disorders are not isolated to specific brain
regions, but result from the interaction of different brain
regions. For example, the frontal lobe plays a key role in non-
task long-term memory (35), the hippocampus is responsible
for storage and transformation of long-term memory and spatial
memory and localization (36), and the posterior cingulate
gyrus is involved in processes such as emotion and self-
evaluation (37). Memory loss, cognitive decline and frequent
mood swings are hallmarks of Alzheimer’s disease (38). Previous
studies have shown differences in the connections between these
brain regions between AD patients and normal controls. These

1 https://www.nitrc.org
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FIGURE 5

Most discriminative functional connections in four classification tasks: (A) eMCI vs. NC, (B) lMCI vs. NC, (C) AD vs. NC, and (D) eMCI vs. lMCI.

characteristics could be considered as biomarkers of Alzheimer’s
disease (39).

3.5 Frequency variability of brain
regions

To visually illustrate the difference between high-
and low-frequency BOLD signals, we employ frequency

variability (FV) to assess changes in different brain
regions at different frequency bands (40). FV is defined
as follows:

FVi = 1−

∑NF
f=1,g 6=f corrcoef (FCf ,i, FCg,i)

NF ×
NF−1

2
(11)

where FCf ,i is the functional connection of node
i (i = 1, · · · , 116) to other ROIs in frequency band f , NF

is the total number of frequency bands (here NF = 2). The
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FIGURE 6

Most discriminative regions of interests (ROIs) identified by our proposed MBFN method in four tasks of (A) eMCI vs. NC, (B) lMCI vs. NC, (C) AD
vs. NC, and (D) eMCI vs. lMCI.

higher the value of FV, the greater the difference of brain regions
in different frequency bands. Figure 7 shows the FV of all ROIs
in four categories (i.e., NC, eMCI, lMCI, and AD).

We can observe that the FV of normal people is relatively
lower than other patient categories. The probable reason
is that the disease of MCI/AD can cause disturbance of
normal neuronal behavior and destruction of neuronal
networks, which leads to unstable BOLD signals. In addition,
for patient categories (i.e., eMCI, lMCI, and AD), the
amygdala, middle temporal gyrus, and superior frontal
gyrus showed relatively high FV, which may be biologically
associated with MCI/AD.

4 Discussion

In this section, we first analyze the effect of
different signal decomposition methods, the impact of
different fusion methods on classification performance,
the effect of Different Datasets, and the effect of
Connection Variations in FBNs. Then we present
the limitations of this work as well as several future
research directions.

4.1 Effect of different signal
decomposition methods

In our proposed MBNF scheme, the EEMD signal
decomposition method is used to extract different frequency
band signals. To verify the effectiveness of the EEMD method
and the effect of different signal decomposition methods on
our experiment, we employ three different signal decomposition
competing methods, including (1) discrete wavelet transform
(DWT) (41), (2) local mean decomposition (LMD) (42),
and (3) empirical mode decomposition (EMD). For a fair
comparison, all competing schemes are performed in consistent
steps (i.e., same data pre-processing, FBN construction and
fusion, feature selection, and classification) except for the signal
decomposition step.

Table 4 summarizes the results of four signal decomposition
methods in two classification tasks. We can observe that
our proposed MBNF using the EEMD decomposition method
provides the best results. The probable reason is that EEMD
can decompose signals adaptively according to the time
characteristics of data, which has the advantage of obtaining
good results in processing BOLD signals.
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FIGURE 7

Frequency variability of all regions of interests (ROIs) in four categories (i.e., NC, eMCI, lMCI, and AD). The top right in every figure represents the
ROI with the highest frequency variability (FV).

TABLE 4 Classification results of four signal decomposition
methods in two tasks.

Task Method ACC (%) SEN (%) SPE (%) AUC (%)

AD vs. NC DWT 88.10 78.77 95.13 95.77

LMD 86.15 73.13 95.71 93.26

EMD 88.13 83.74 92.67 97.20

Ours 93.08 86.96 96.73 98.58

eMCI vs. lMCI DWT 85.80 84.19 87.86 93.96

LMD 85.80 87.89 85.87 92.11

EMD 87.74 85.49 90.76 96.21

Ours 90.64 86.02 94.97 96.98

Bold values indicate the best results in each task.

4.2 Effect of different fusion methods

We use the SNF method to combine FBNs based on
different frequency bands in the proposed MBNF scheme.
To verify the effectiveness of the SNF method and the effect
of different network fusion methods in our experiment, two
methods are used to compare the SNF method, including (1)
Concatenate, a scheme for splicing FBNs based on different

bands into a feature vector; (2) Canonical Correlation Analysis
(CCA), a typical fusion method (43). For a fair comparison,
all competing schemes are performed in consistent steps
(i.e., same data pre-processing, signal decomposition, FBN
construction, feature selection, and classification) except for the
FBN fusion step.

In Table 5, we can observe that the performance of CCA
is worse than the SNF techniques. The underlying reason is
that CCA can only determine the linear correlation and ignore
the nonlinear correlation in the interaction between the high-
frequency FBN and the low-frequency FBN. Besides, the reason
why the SNF achieves better performance than concatenating is
that the concatenate method ignores the structural properties of
FBNs by the splicing technique. To explore the impact of noise
on FBN, we added random white Gaussian noise with varying
standard deviation to the FBN (44). It can be seen in the Figure 7
and table that with the increasing noise level, the classification
accuracy was decreasing. We used a bootstrapping method to
enhance the robustness of our method. We resampled the data
and created several training sets which were the same size as
the original data. The experimental results are shown in the
Figure 8.
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TABLE 5 Classification results of three network fusion
methods in two tasks.

Task Method ACC (%) SEN (%) SPE (%) AUC (%)

AD vs. NC Concatenate 90.88 84.04 96.02 97.40

CCA 85.36 75.03 92.97 90.79

Ours 93.08 86.96 96.73 98.58

eMCI vs.
lMCI

Concatenate 87.74 88.52 87.53 94.43

CCA 78.38 67.66 88.23 85.15

Ours 90.64 86.02 94.97 96.98

Bold values indicate the best results in each task.

FIGURE 8

Results achieved by the proposed method with varying degrees
of functional brain network (FBN) random noise of Pearson’s
correlation (PC) in lMCI vs. eMCI classification.

4.3 Effect of different datasets

Since different distributed datasets may affect the
experimental results, we perform three independent datasets
to confirm our conclusions, including Schizophrenia (SZ),

Major Depressive Disorder (MDD), and Autism Spectrum
Disorder (ASD). Specifically, the dataset of SZ (45), from
publicly shared online datasets by the Mind Research Network
and the University of New Mexico, includes 57 patients with
chronic schizophrenia patients and 64 NCs. Besides, we also
perform our proposed scheme on the ABIDE database (46)
collected from the New York University site. The ABIDE
dataset includes 184 subjects, of which 79 are from ASD and
105 are from NC. The MDD dataset is from the ninth site
of the REST-meta-MDD Consortium (47), which contains
49 MDD patients and 47 NCs. Note that due to the fact
that the MDD database used in this study is provided as
preprocessed by the REST meta-MDD project, we have no
control over the preprocessing pipeline. Therefore, we process
the other two databases via the same pipeline as the MDD
database for fairness.

As shown in Table 6, our MBNF method achieves the
overall best performance regardless of which database is used.
These results imply that combining the structural information
of functional brain networks in different frequency bands helps
to improve the accuracy of identifying patients from NCs. In
addition, the other three databases give lower performance
compared to the ADNI database. The probable reason is
that the lesions of brain structure caused by AD/MCI are
more severe than mental disease (e.g., MDD and ASD) and
neurodevelopmental disorders (e.g., SZ).

4.4 Effect of connection variations in
FBNs

It is well-known that PC based functional connectivity tends
to be sensitive to noise. To investigate whether variations in
connectivity affect our proposed method, we performed a set
of experiments by adding white Gaussian random noise of
varying degrees to the FBN estimated by the PC, and present

TABLE 6 Classification result of three data sets on MBNF method.

Task Scheme ACC (%) SEN (%) SPE (%) AUC (%)

Schizophrenia vs. NC Full-band 60.52 58.37 65.83 68.57

Low-band 56.74 55.56 63.15 65.55

High-band 55.81 52.19 60.23 63.08

MBNF 61.34 59.89 66.71 69.83

ASD vs. NC Full-band 64.86 60.24 69.28 71.86

Low-band 57.21 55.18 58.36 60.86

High-band 60.73 56.83 62.61 63.73

MBNF 65.58 61.36 69.72 72.59

MDD vs. NC Full-band 59.67 61.64 58.73 62.27

Low-band 54.46 54.28 53.61 57.95

High-band 56.69 56.39 54.41 59.34

MBNF 60.93 59.36 60.79 63.82

Bold values indicate the best results in each task.
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the experimental results in Figure 8. It can be observed that
the classification results only show a slight fluctuation when the
noise degree (standard deviation) is less than 0.1. However, the
classification accuracy decreases substantially as the noise level
increases. This side-fact indicates that low degrees of noise have
little effect on our method and implies that the MBNF scheme
already has a relatively good robustness.

4.5 Limitation and future work

Although our proposed framework has a good effect on
disease diagnosis, there are still several limitations that need to
be noted. The steps of signal decomposition, FBN construction,
and fusion in our proposed MBNF scheme are performed
separately, which probably leads to potential noise in each
step. In addition, the extracted features based on the way of
separate-step are not necessarily optimal for the subsequent
classification task. Therefore, an end-to-end method like deep
learning improves experimental performance, which is also the
direction of our future work.

5 Conclusion

In this paper, we propose a multi-frequency network Fusion
framework (MBNF) to combine the structural information
of functional brain networks in different frequency bands.
Specifically, we first use EEMD to decompose the BOLD
signal into high-frequency signal and low-frequency signal.
Then we construct a high-frequency functional network and
a low-frequency functional network, respectively. Finally, the
similarity network fusion is employed to fuse high-frequency
network and low-frequency network for classification. The
validation on the ADNI dataset shows that our proposed multi-
band network fusion framework is effective.
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